Machine Learning for Quantum Applications - Lecture 3
Offered By: ICTP Condensed Matter and Statistical Physics via YouTube
Course Description
Overview
Explore advanced concepts in machine learning for quantum applications in this comprehensive lecture by Eliska Greplova from Delft University of Technology. Delve into cutting-edge techniques and methodologies that bridge the gap between machine learning and quantum physics. Gain insights into how these powerful tools can be applied to solve complex problems in quantum systems and enhance our understanding of quantum phenomena. Discover the latest developments in this rapidly evolving field and learn how machine learning algorithms can be leveraged to optimize quantum experiments, analyze quantum data, and accelerate quantum research. Enhance your knowledge of both machine learning and quantum physics, and understand their synergistic potential in advancing scientific discovery and technological innovation.
Syllabus
Machine learning for quantum applications 3
Taught by
ICTP Condensed Matter and Statistical Physics
Related Courses
Intro to Computer ScienceUniversity of Virginia via Udacity Quantum Mechanics for IT/NT/BT
Korea University via Open Education by Blackboard Emergent Phenomena in Science and Everyday Life
University of California, Irvine via Coursera Quantum Information and Computing
Indian Institute of Technology Bombay via Swayam Quantum Computing
Indian Institute of Technology Kanpur via Swayam