Machine Learning for Beginners - Data Scientists and Analysts
Offered By: Shashank Kalanithi via YouTube
Course Description
Overview
Syllabus
1.3.0 Machine Learning in 4 Lines of Code -
2.0.0 Machine Learning Basics -
3.0.0 Machine Learning in Business -
3.1.0 How to know when to use ML -
3.2.0 Ethics in Machine Learning -
4.1.0 Holistically Designing A ML Algorithm Using CRISP-DM -
4.2.0 Business Understanding and Data Understanding -
4.3.0 Data Preparation -
4.4.0 Modeling -
4.4.1 Determining Which Model to Use -
4.4.2 Implementing a Model -
4.5.0 Evaluation -
5.0.0 Data Cleaning and Environment Setup -
5.1.0 Setting up and Environment -
5.2.0 Data Cleaning Techniques -
5.2.2 Basic Data Format -
5.2.3 Remove Columns with One Unique Value -
5.2.4 Data Types -
5.2.5 Parsing Dates -
5.2.6 Missing Data -
5.2.7 Select Target Column -
5.2.8 Data Encoding -
5.2.9 Multicollinearity -
5.2.10 Feature Engineering -
5.2.11 Scaling -
5.2.12 Train Test Split -
6.0.0 Regression -
6.1.0 Data Cleaning: Regression -
6.2.0 Model Selection: Regression -
6.3.1 Linear Regression -
6.3.2 Random Forest Regression -
6.3.3 XGBoost Regression -
6.4.0 Hyperparameter Tuning -
7.0.0 Classification Practice -
7.2.1 Logistic Regression -
7.2.2 Random Forest Classifier -
7.2.3 LightGBM -
7.3.0 Model Evaluation: Classification -
7.3.1 Confusion Matrix -
7.3.2 Area Under the Curve AUC -
7.3.3 F1 Score -
Taught by
Shashank Kalanithi
Related Courses
Natural Language ProcessingColumbia University via Coursera Intro to Algorithms
Udacity Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Paradigms of Computer Programming
Université catholique de Louvain via edX Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX