Machine Learning Data Pre-processing and Data Wrangling Using Python
Offered By: The AI University via YouTube
Course Description
Overview
Syllabus
1.Introduction to Python libraries(Data Scientist's arsenal).
2.Introduction to Python Datasets (.csv files).
3.Dataset Missing Values & Imputation (Detailed Python Tutorial) | Impute Missing values in ML.
4.One Hot Encoding to process Categorical variables (Python) | Process Categorical Features.
5.Split data into Training and Test set in Data Science (Python) | Train Test Split function in ML.
6.Feature Scaling in Machine Learning(Normalization & Standardization) | Feature Scaling Sklearn.
7.Outlier Detection and Treatment using Python - Part 1 | How to Detect outliers in Machine Learning.
8.Outlier Detection and Treatment using Python - Part 2 | How to Detect outliers in Machine Learning.
9.Outlier Detection and Treatment using Python - Part 3 | How to Detect outliers in Machine Learning.
Log Transformation for Outliers | Convert Skewed data to Normal Distribution.
Outlier Treatment through Square Root Transformation | Convert Skewed data to Normal Distribution.
Python Pandas Tutorial - Adding & Dropping columns (Machine Learning).
Create Pivot table using pandas DataFrame (Python).
Use Regular Expression to split string into Dataframe columns (Pandas).
Python Pandas Tutorial Series: Using Map, Apply and Applymap.
Python Pandas Tutorial - Merge Dataframes (Machine Learning).
Taught by
The AI University
Related Courses
Data Wrangling with MongoDBMongoDB via Udacity Intro to Data Science
Udacity Feature Engineering for Improving Learning Environments
University of Texas Arlington via edX Data Science: Wrangling
Harvard University via edX Data Science: Capstone
Harvard University via edX