YoVDO

Machine Learning

Offered By: YouTube

Tags

Machine Learning Courses Linear Regression Courses Dimensionality Reduction Courses Logistic Regression Courses Clustering Algorithms Courses Principal Component Analysis Courses Regularization Courses Cross-Validation Courses Confusion Matrix Courses Linear Discriminant Analysis Courses

Course Description

Overview

Embark on a comprehensive 22-hour machine learning journey, progressing step-by-step through a wide range of topics. Begin with a gentle introduction to machine learning fundamentals, including cross-validation, confusion matrices, sensitivity and specificity, and bias and variance. Dive into key concepts like entropy, linear regression, multiple regression, and logistic regression, with clear explanations of ROC curves, AUC, odds ratios, and maximum likelihood estimation. Explore advanced techniques such as regularization methods (Ridge, Lasso, and Elastic Net), principal component analysis (PCA), linear discriminant analysis (LDA), and clustering algorithms (hierarchical, k-means, and DBSCAN). Delve into decision trees, random forests, gradient boosting, and support vector machines. Gain insights into neural networks, covering backpropagation, activation functions, and convolutional neural networks for image classification. Master essential statistical concepts and data visualization techniques, including lowess and loess smoothing. By the end of this playlist, acquire a solid foundation in machine learning theory and practical applications, preparing you for real-world data science challenges.

Syllabus

A Gentle Introduction to Machine Learning.
Machine Learning Fundamentals: Cross Validation.
Machine Learning Fundamentals: The Confusion Matrix.
Machine Learning Fundamentals: Sensitivity and Specificity.
Machine Learning Fundamentals: Bias and Variance.
Entropy (for data science) Clearly Explained!!!.
The Main Ideas of Fitting a Line to Data (The Main Ideas of Least Squares and Linear Regression.).
Linear Regression, Clearly Explained!!!.
Multiple Regression, Clearly Explained!!!.
Using Linear Models for t-tests and ANOVA, Clearly Explained!!!.
Design Matrices For Linear Models, Clearly Explained!!!.
ROC and AUC, Clearly Explained!.
ROC and AUC in R.
Odds and Log(Odds), Clearly Explained!!!.
Odds Ratios and Log(Odds Ratios), Clearly Explained!!!.
StatQuest: Logistic Regression.
Logistic Regression Details Pt1: Coefficients.
Logistic Regression Details Pt 2: Maximum Likelihood.
Logistic Regression Details Pt 3: R-squared and p-value.
Saturated Models and Deviance.
Logistic Regression in R, Clearly Explained!!!!.
Deviance Residuals.
Regularization Part 1: Ridge (L2) Regression.
Regularization Part 2: Lasso (L1) Regression.
Ridge vs Lasso Regression, Visualized!!!.
Regularization Part 3: Elastic Net Regression.
Ridge, Lasso and Elastic-Net Regression in R.
StatQuest: Principal Component Analysis (PCA), Step-by-Step.
StatQuest: PCA main ideas in only 5 minutes!!!.
StatQuest: PCA - Practical Tips.
StatQuest: PCA in R.
StatQuest: PCA in Python.
StatQuest: Linear Discriminant Analysis (LDA) clearly explained..
Bam!!! Clearly Explained!!!.
StatQuest: MDS and PCoA.
StatQuest: MDS and PCoA in R.
StatQuest: t-SNE, Clearly Explained.
StatQuest: Hierarchical Clustering.
StatQuest: K-means clustering.
StatQuest: K-nearest neighbors, Clearly Explained.
Naive Bayes, Clearly Explained!!!.
Gaussian Naive Bayes, Clearly Explained!!!.
Decision and Classification Trees, Clearly Explained!!!.
StatQuest: Decision Trees, Part 2 - Feature Selection and Missing Data.
Regression Trees, Clearly Explained!!!.
How to Prune Regression Trees, Clearly Explained!!!.
Classification Trees in Python from Start to Finish.
StatQuest: Random Forests Part 1 - Building, Using and Evaluating.
StatQuest: Random Forests Part 2: Missing data and clustering.
StatQuest: Random Forests in R.
The Chain Rule.
Gradient Descent, Step-by-Step.
Stochastic Gradient Descent, Clearly Explained!!!.
AdaBoost, Clearly Explained.
Gradient Boost Part 1 (of 4): Regression Main Ideas.
Gradient Boost Part 2 (of 4): Regression Details.
Gradient Boost Part 3 (of 4): Classification.
Gradient Boost Part 4 (of 4): Classification Details.
Troll 2, Clearly Explained!!!.
Support Vector Machines Part 1 (of 3): Main Ideas!!!.
Support Vector Machines Part 2: The Polynomial Kernel (Part 2 of 3).
Support Vector Machines Part 3: The Radial (RBF) Kernel (Part 3 of 3).
Support Vector Machines in Python from Start to Finish..
XGBoost Part 1 (of 4): Regression.
XGBoost Part 2 (of 4): Classification.
XGBoost Part 3 (of 4): Mathematical Details.
XGBoost Part 4 (of 4): Crazy Cool Optimizations.
XGBoost in Python from Start to Finish.
Neural Networks Pt. 1: Inside the Black Box.
Neural Networks Pt. 2: Backpropagation Main Ideas.
Backpropagation Details Pt. 1: Optimizing 3 parameters simultaneously..
Backpropagation Details Pt. 2: Going bonkers with The Chain Rule.
Neural Networks Pt. 3: ReLU In Action!!!.
Neural Networks Pt. 4: Multiple Inputs and Outputs.
Neural Networks Part 5: ArgMax and SoftMax.
The SoftMax Derivative, Step-by-Step!!!.
Neural Networks Part 6: Cross Entropy.
Neural Networks Part 7: Cross Entropy Derivatives and Backpropagation.
Neural Networks Part 8: Image Classification with Convolutional Neural Networks.
Tensors for Neural Networks, Clearly Explained!!!.
Lowess and Loess, Clearly Explained!!!.
Population and Estimated Parameters, Clearly Explained!!!.
Clustering with DBSCAN, Clearly Explained!!!.


Taught by

StatQuest with Josh Starmer

Related Courses

Fine-tuning Convolutional Networks to Classify Dog Breeds
Coursera Project Network via Coursera
Predict Gas Guzzlers using a Neural Net Model on the MPG Data Set
Coursera Project Network via Coursera
Predict Gas Guzzlers using MPG Data Set and a Random Forest
Coursera Project Network via Coursera
Predict Housing Prices in R on Boston Housing Data
Coursera Project Network via Coursera
Predict Ideal Diamonds over Good Diamonds using a Random Forest using R
Coursera Project Network via Coursera