Numerical Solutions of Schrödinger's Equation Applied to Atomic Physics - Class 3
Offered By: ICTP-SAIFR via YouTube
Course Description
Overview
Explore numerical solutions of Schrödinger's equation applied to atomic physics in this third lecture of a four-part series presented by Lucas Madeira from IFSC-USP, Brazil. Part of the ICTP-SAIFR School on Light and Cold Atoms held in March 2023, this 76-minute talk delves into advanced computational techniques for solving quantum mechanical problems in atomic systems. Learn how to apply numerical methods to the Schrödinger equation, gaining practical skills for modeling and simulating atomic structures and behaviors. Ideal for graduate students and researchers in physics, chemistry, and related fields seeking to enhance their understanding of computational approaches in quantum mechanics and atomic physics.
Syllabus
Lucas Madeira: Numerical solutions of Schrödinger’s equation applied to atomic physics- Class 3 of 4
Taught by
ICTP-SAIFR
Related Courses
AP® Physics 2 - Part 3: Optics and Modern PhysicsRice University via edX Atomic and Optical Physics I– Part 1: Resonance
Massachusetts Institute of Technology via edX Atomic and Optical Physics I – Part 2: Atomic structure and atoms in external field
Massachusetts Institute of Technology via edX Atomic and Optical Physics I– Part 3: Atom-Light Interactions 1 -- Matrix elements and quantized field
Massachusetts Institute of Technology via edX Atomic and Optical Physics I– Part 4: Atom-Light Interactions 2: Line Broadening and Two-Photon Transitions
Massachusetts Institute of Technology via edX