The P^1-Motivic Cycle Map
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the P^1-motivic homotopy theory and its applications in a 58-minute lecture by Longke Tang at the Hausdorff Center for Mathematics. Delve into this generalization of A^1-motivic homotopy theory, which relaxes the requirement of A^1 contractibility and focuses on the invertibility of pointed P^1. Discover how this approach extends to cohomology theories with nontrivial reduced cohomology of A^1, such as Hodge cohomology, de Rham cohomology, and prismatic cohomology. Learn about the construction of the P^1-motivic cycle map and its role in providing a unified framework for cycle maps in various cohomology theories. If time allows, examine the application of this cycle map in proving prismatic Poincaré duality.
Syllabus
Longke Tang: The P^1-motivic cycle map
Taught by
Hausdorff Center for Mathematics
Related Courses
Introduction to Algebraic Geometry and Commutative AlgebraIndian Institute of Science Bangalore via Swayam Introduction to Algebraic Geometry and Commutative Algebra
NPTEL via YouTube Basic Algebraic Geometry - Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity
NPTEL via YouTube Basic Algebraic Geometry
NIOS via YouTube Affine and Projective Geometry, and the Problem of Lines
Insights into Mathematics via YouTube