YoVDO

Local LLM Fine-tuning on Mac (M1 16GB) Using QLoRA and MLX

Offered By: Shaw Talebi via YouTube

Tags

Machine Learning Courses Inference Courses QLoRA Courses Mistral 7B Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the process of fine-tuning a large language model (LLM) locally on an M-series Mac in this comprehensive tutorial video. Learn how to adapt Mistral 7b to respond to YouTube comments in the presenter's style. Dive into topics including the motivation behind local fine-tuning, an introduction to MLX, setting up the environment, and working with example code. Gain hands-on experience with inference using both un-finetuned and finetuned models, understand the QLoRA fine-tuning technique, and discover the intricacies of dataset formatting. Follow along as the presenter demonstrates running local training and provides insights on LoRA rank. Access additional resources, including a blog post, GitHub repository, and related videos to further enhance your understanding of LLM fine-tuning on Mac.

Syllabus

Intro -
Motivation -
MLX -
GitHub Repo -
Setting up environment -
Example Code -
Inference with un-finetuned model -
Fine-tuning with QLoRA -
Aside: dataset formatting -
Running local training -
Inference with finetuned model -
Note on LoRA rank -


Taught by

Shaw Talebi

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent