YoVDO

LLMOps: Fine-Tuning Video Classifier (ViViT) with Custom Data

Offered By: The Machine Learning Engineer via YouTube

Tags

Computer Vision Courses Machine Learning Courses Deep Learning Courses Neural Networks Courses Transfer Learning Courses Fine-Tuning Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to fine-tune a Video Vision Transformer (ViViT) using your own dataset in this comprehensive 44-minute tutorial. Explore the process of leveraging a pretrained model by Google (google/vivit-b-16x2-kinetics400), initially trained on the Kinetics-400 dataset, and adapt it to classify videos from a different dataset. Gain hands-on experience in implementing LLMOps techniques for machine learning and data science applications. Access the accompanying code repository on GitHub to follow along and enhance your skills in video classification using state-of-the-art transformer models.

Syllabus

LLMOps: Fine Tune Video Classifier (ViViT ) with your own data #machinelearning #datascience


Taught by

The Machine Learning Engineer

Related Courses

Structuring Machine Learning Projects
DeepLearning.AI via Coursera
Natural Language Processing on Google Cloud
Google Cloud via Coursera
Introduction to Learning Transfer and Life Long Learning (3L)
University of California, Irvine via Coursera
Advanced Deployment Scenarios with TensorFlow
DeepLearning.AI via Coursera
Neural Style Transfer with TensorFlow
Coursera Project Network via Coursera