Linux Kernel Autotuning for Optimal Performance
Offered By: Linux Plumbers Conference via YouTube
Course Description
Overview
Explore an innovative solution for automating Linux kernel parameter tuning in this conference talk from the Linux Plumbers Conference. Delve into the challenges of optimizing performance across diverse workloads in large-scale data centers, and discover how machine learning algorithms like Bayesian optimization can outperform manual tuning. Examine the design and architecture of a comprehensive autotuning system, with a focus on memory management optimization. Gain insights into specific case studies demonstrating the effectiveness of this approach, and consider the potential for an in-kernel machine learning framework to further enhance Linux kernel optimization in kernel-space.
Syllabus
Linux Kernel Autotuning - Cong Wang
Taught by
Linux Plumbers Conference
Related Courses
Heterogeneous Parallel ProgrammingUniversity of Illinois at Urbana-Champaign via Coursera Advanced Operating Systems
Georgia Institute of Technology via Udacity 計算機程式設計 (Computer Programming)
National Taiwan University via Coursera Introduction to Operating Systems
Georgia Institute of Technology via Udacity Android Performance
Google via Udacity