YoVDO

Linear Regression in R

Offered By: YouTube

Tags

Linear Regression Courses Data Analysis Courses R Programming Courses Categorical Variables Courses

Course Description

Overview

Master linear regression techniques in R through this comprehensive tutorial series. Learn to fit models, interpret outputs, check assumptions, handle categorical variables, analyze interactions, perform partial F-tests, and implement polynomial regression. Gain practical skills in using R for both simple and multiple linear regression, including creating dummy variables, changing reference categories, and assessing model validity through residual plots. Ideal for statistics students and researchers looking to enhance their data analysis capabilities using R.

Syllabus

Simple Linear Regression in R | R Tutorial 5.1 | MarinStatsLectures.
Checking Linear Regression Assumptions in R | R Tutorial 5.2 | MarinStatsLectures.
Multiple Linear Regression in R | R Tutorial 5.3 | MarinStatsLectures.
Changing Numeric Variable to Categorical in R | R Tutorial 5.4 | MarinStatsLectures.
Dummy Variables or Indicator Variables in R | R Tutorial 5.5 | MarinStatsLectures.
Change Reference (Baseline) Category in Regression with R | R Tutorial 5.6 | MarinStatsLectures.
Including Variables/ Factors in Regression with R, Part I | R Tutorial 5.7 | MarinStatsLectures.
Including Variables/ Factors in Regression with R, Part II | R Tutorial 5.8 | MarinStatsLectures.
Multiple Linear Regression with Interaction in R | R Tutorial 5.9 | MarinStatsLectures.
Interpreting Interaction in Linear Regression with R | R Tutorial 5.10 | MarinStatsLectures.
Partial F-Test for Variable Selection in Linear Regression | R Tutorial 5.11| MarinStatsLectures.
Polynomial Regression in R | R Tutorial 5.12 | MarinStatsLectures.


Taught by

MarinStatsLectures-R Programming & Statistics

Related Courses

Statistics: Making Sense of Data
University of Toronto via Coursera
Curso Práctico de Bioestadística con R
Universidad San Pablo CEU via Miríadax
Statistical Learning with R
Stanford University via edX
The Analytics Edge
Massachusetts Institute of Technology via edX
Regression Models
Johns Hopkins University via Coursera