Geometric Constructions for Sparse Integer Signal Recovery
Offered By: USC Probability and Statistics Seminar via YouTube
Course Description
Overview
Explore geometric constructions for sparse integer signal recovery in this 47-minute lecture from the USC Probability and Statistics Seminar. Delve into the problem of constructing m x d integer matrices with small entries and large d compared to m, ensuring that for all vectors x in Z^d with at most s ≤ m nonzero coordinates, the image vector Ax is not 0. Examine how these constructions enable robust recovery of the original vector x from its image Ax. Investigate the existence of such matrices for appropriate choices of d as a function of m, considering both probabilistic arguments and deterministic constructions. Learn about a family of matrices derived from a geometric covering problem and discover the connection between these constructions and a simple variant of the Tarski plank problem. Gain insights from joint works with B. Sudakov, D. Needell, and A. Hsu in this comprehensive exploration of compressed sensing applications in wireless communications and medical imaging.
Syllabus
Lenny Fukshansky: Geometric constructions for sparse integer signal recovery (Claremont McKenna)
Taught by
USC Probability and Statistics Seminar
Related Courses
Coding the Matrix: Linear Algebra through Computer Science ApplicationsBrown University via Coursera Mathematical Methods for Quantitative Finance
University of Washington via Coursera Introduction à la théorie de Galois
École normale supérieure via Coursera Linear Algebra - Foundations to Frontiers
The University of Texas at Austin via edX Massively Multivariable Open Online Calculus Course
Ohio State University via Coursera