Quantum Theory
Offered By: Friedrich–Alexander University Erlangen–Nürnberg via YouTube
Course Description
Overview
Syllabus
Axioms of Quantum Mechanics - Lec01 - Frederic Schuller.
Banach Spaces - Lec02 - Frederic Schuller.
Separable Hilbert spaces - L03 - Frederic Schuller.
Projectors,bars and kets - Lec 04 - Frederic Schuller.
Measure Theory -Lec05- Frederic Schuller.
Integration of measurable functions - Lec06 - Frederic Schuller.
Self adjoint and essentially self-adjoint operators - Lec 07 - Frederic Schuller.
Spectra and perturbation theory - L08 - Frederic Schuller.
Case study: momentum operator - Lec09 - Frederic Schuller.
Inverse Spectral Theorem - L10 - Frederic Schuller.
Spectral Theorem - L11 - Frederic Schuller.
Stone's theorem & construction of observables - L12 - Frederic Schuller.
Spin - L13 - Frederic Schuller.
Composite systems - L14 - Frederic Schuller.
Total spin of composite system - L15 - Frederic Schuller.
Quantum Harmonic Oscillator - L16 - Frederic Schuller.
Quantum Harmonic Oscillator - L17 - Frederic Schuller.
The Fourier Operator - L18 - Frederic Schuller.
The Schrodinger Operator - L19 - Frederic Schuller.
Periodic potentials - L20 - Frederic Schuller.
Periodic potentials - L21 - Frederic Schuller.
Taught by
Frederic Schuller
Tags
Related Courses
Applications of Quantum MechanicsMassachusetts Institute of Technology via edX Квантовая механика. Часть 2. Вычислительные методы квантовой механики
National Research Nuclear University MEPhI via edX Lectures on Selected Topics in Classical and Fluid Mechanics
Moscow Institute of Physics and Technology via Coursera Physical Chemistry
Massachusetts Institute of Technology via MIT OpenCourseWare Quantum Physics III (Spring 2018)
Massachusetts Institute of Technology via MIT OpenCourseWare