Deepsets, Graph Neural Networks, and Transformers in Machine Learning - Lecture 4
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore advanced machine learning techniques in this lecture focusing on Deepsets, Graph Neural Networks, and Transformers. Delve into the applications of these powerful algorithms in the context of High Energy Physics research. Gain insights from expert Sanmay Ganguly as he discusses the potential of these methods for analyzing complex data structures and improving data-driven discoveries in particle physics. Learn how these cutting-edge approaches can be leveraged to process the massive datasets generated by experiments like the Large Hadron Collider, potentially uncovering new physics phenomena and advancing our understanding of the universe.
Syllabus
Lectures on Deepsets, Graph Neural Network and Transformers... (Lecture 4) by Sanmay Ganguly
Taught by
International Centre for Theoretical Sciences
Related Courses
Linear CircuitsGeorgia Institute of Technology via Coursera مقدمة في هندسة الطاقة والقوى
King Abdulaziz University via Rwaq (رواق) Magnetic Materials and Devices
Massachusetts Institute of Technology via edX Linear Circuits 2: AC Analysis
Georgia Institute of Technology via Coursera Transmisión de energía eléctrica
Tecnológico de Monterrey via edX