Convolutional Neural Networks for Visual Recognition
Offered By: Stanford University via YouTube
Course Description
Overview
Syllabus
Lecture 1 | Introduction to Convolutional Neural Networks for Visual Recognition.
Lecture 2 | Image Classification.
Lecture 3 | Loss Functions and Optimization.
Lecture 4 | Introduction to Neural Networks.
Lecture 5 | Convolutional Neural Networks.
Lecture 6 | Training Neural Networks I.
Lecture 7 | Training Neural Networks II.
Lecture 8 | Deep Learning Software.
Lecture 9 | CNN Architectures.
Lecture 10 | Recurrent Neural Networks.
Lecture 11 | Detection and Segmentation.
Lecture 12 | Visualizing and Understanding.
Lecture 13 | Generative Models.
Lecture 14 | Deep Reinforcement Learning.
Lecture 15 | Efficient Methods and Hardware for Deep Learning.
Lecture 16 | Adversarial Examples and Adversarial Training.
Taught by
Stanford University School of Engineering
Tags
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Computational Photography
Georgia Institute of Technology via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera Introduction to Computer Vision
Georgia Institute of Technology via Udacity