Convolutional Neural Networks for Visual Recognition
Offered By: Stanford University via YouTube
Course Description
Overview
Syllabus
Lecture 1 | Introduction to Convolutional Neural Networks for Visual Recognition.
Lecture 2 | Image Classification.
Lecture 3 | Loss Functions and Optimization.
Lecture 4 | Introduction to Neural Networks.
Lecture 5 | Convolutional Neural Networks.
Lecture 6 | Training Neural Networks I.
Lecture 7 | Training Neural Networks II.
Lecture 8 | Deep Learning Software.
Lecture 9 | CNN Architectures.
Lecture 10 | Recurrent Neural Networks.
Lecture 11 | Detection and Segmentation.
Lecture 12 | Visualizing and Understanding.
Lecture 13 | Generative Models.
Lecture 14 | Deep Reinforcement Learning.
Lecture 15 | Efficient Methods and Hardware for Deep Learning.
Lecture 16 | Adversarial Examples and Adversarial Training.
Taught by
Stanford University School of Engineering
Tags
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX