Stable Diffusion
Offered By: University of Central Florida via YouTube
Course Description
Overview
Explore the innovative Stable Diffusion model in this 30-minute lecture from the University of Central Florida. Delve into the challenges of standard diffusion models, visualize data issues, and examine key methods including reconstruction loss, adversarial loss, and conditioning. Discover experiments in unconditional latent diffusion for image generation and super-resolution techniques. Analyze a real-world scenario of a person crossing a busy intersection. Conclude with a critical evaluation of the paper's strengths and weaknesses, gaining valuable insights into this cutting-edge machine learning approach.
Syllabus
Introduction
Issues with standard diffusion models
Visualizing the issue with data
Method - Reconstruction Loss
Method - Adversarial Loss
Method - Conditioning
Experiments
Image Generation with Unconditional Latent Diffusion
Super-Resolution with Latent Diffusion
A person crossing a busy intersection
Conclusion
Points For the Paper
Points Against the Paper
Taught by
UCF CRCV
Tags
Related Courses
6.S191: Introduction to Deep LearningMassachusetts Institute of Technology via Independent Generate Synthetic Images with DCGANs in Keras
Coursera Project Network via Coursera Image Compression and Generation using Variational Autoencoders in Python
Coursera Project Network via Coursera Build Basic Generative Adversarial Networks (GANs)
DeepLearning.AI via Coursera Apply Generative Adversarial Networks (GANs)
DeepLearning.AI via Coursera