YoVDO

Recurrent Neural Networks - Full Stack Deep Learning - Spring 2021

Offered By: The Full Stack via YouTube

Tags

Deep Learning Courses Long short-term memory (LSTM) Courses Attention Mechanisms Courses Encoder-Decoder Architecture Courses Sequence Modeling Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Dive deep into Recurrent Neural Networks (RNNs) in this comprehensive lecture from the Full Stack Deep Learning Spring 2021 series. Explore sequence problems before delving into the RNN architecture, addressing its challenges and solutions. Examine a case study on Machine Translation at Google, and learn about the CTC loss function crucial for lab work. Analyze the advantages and disadvantages of RNNs, and get a preview of non-recurrent sequence models. Topics covered include sequence problems, RNN review, vanishing gradient issues, LSTMs and variants, bidirectionality and attention in Google's Neural Machine Translation, CTC loss, pros and cons of encoder-decoder LSTM architectures, and an introduction to WaveNet.

Syllabus

- Introduction
- Sequence Problems
- Review of RNNs
- Vanishing Gradient Issue
- LSTMs and Its Variants
- Bidirectionality and Attention from Google's Neural Machine Translation
- CTC Loss
- Pros and Cons of Encoder-Decoder LSTM Architectures
- WaveNet


Taught by

The Full Stack

Related Courses

Deep Learning for Natural Language Processing
University of Oxford via Independent
Sequence Models
DeepLearning.AI via Coursera
Deep Learning Part 1 (IITM)
Indian Institute of Technology Madras via Swayam
Deep Learning - Part 1
Indian Institute of Technology, Ropar via Swayam
Deep Learning - IIT Ropar
Indian Institute of Technology, Ropar via Swayam