YoVDO

TinyML and Efficient Deep Learning Computing - Course Summary

Offered By: MIT HAN Lab via YouTube

Tags

TinyML Courses Quantization Courses Neural Architecture Search Courses Model Compression Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the key concepts and techniques covered in this MIT course on TinyML and Efficient Deep Learning Computing. Gain insights into deploying neural networks on resource-constrained devices like mobile phones and IoT devices. Dive deep into efficient machine learning techniques, including model compression, pruning, quantization, neural architecture search, and distillation. Learn about efficient training methods such as gradient compression and on-device transfer learning. Discover application-specific model optimization for videos, point clouds, and NLP. Get hands-on experience implementing deep learning applications on microcontrollers, mobile phones, and quantum machines through an open-ended design project. Access course materials, including lecture slides, on the course website to enhance your understanding of efficient machine learning techniques for powerful deep learning applications.

Syllabus

Introduction
Efficient Difference Techniques
Summary


Taught by

MIT HAN Lab

Related Courses

Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Principles of Communication Systems - I
Indian Institute of Technology Kanpur via Swayam
Digital Signal Processing 2: Filtering
École Polytechnique Fédérale de Lausanne via Coursera
Digital Signal Processing 3: Analog vs Digital
École Polytechnique Fédérale de Lausanne via Coursera
Digital Signal Processing 4: Applications
École Polytechnique Fédérale de Lausanne via Coursera