YoVDO

TinyML and Efficient Deep Learning Computing - Lecture 24: Course Summary

Offered By: MIT HAN Lab via YouTube

Tags

TinyML Courses Quantization Courses Neural Architecture Search Courses Model Compression Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Summarize the key concepts and techniques covered in the TinyML and Efficient Deep Learning Computing course. Explore efficient machine learning methods for deploying neural networks on resource-constrained devices like mobile phones and IoT devices. Cover topics including model compression, pruning, quantization, neural architecture search, distillation, gradient compression, on-device transfer learning, and application-specific optimizations for video, point cloud, and NLP tasks. Gain hands-on experience implementing deep learning applications on microcontrollers, mobile devices, and quantum machines through an open-ended design project focused on mobile AI. Learn how to overcome challenges in training and deploying neural networks on edge devices to enable powerful AI applications with limited computational resources.

Syllabus

Lecture 24 - Course Summary | MIT 6.S965


Taught by

MIT HAN Lab

Related Courses

Deploying TinyML
Harvard University via edX
Learning TinyML
LinkedIn Learning
Create and Connect Secure and Trustworthy IoT Devices
Microsoft via YouTube
Speech-to-Intent on MCU: TinyML for Efficient Device Control - Lecture 6
Hardware.ai via YouTube
Wio Terminal TinyML Course - People Counting and Azure IoT Central Integration - Part 3
Hardware.ai via YouTube