Noise-Robust Quantum Machine Learning - Lecture 23
Offered By: MIT HAN Lab via YouTube
Course Description
Overview
Explore noise-robust quantum machine learning in this comprehensive lecture from MIT's TinyML and Efficient Deep Learning Computing course. Delve into advanced techniques for deploying neural networks on resource-constrained devices like mobile phones, IoT devices, and quantum machines. Learn about model compression, pruning, quantization, neural architecture search, and distillation for efficient inference. Discover efficient training methods, including gradient compression and on-device transfer learning. Gain insights into application-specific model optimization for videos, point cloud, and NLP. Get hands-on experience implementing deep learning applications on microcontrollers and quantum machines through an open-ended design project focused on mobile AI. Access lecture slides and additional course information at efficientml.ai.
Syllabus
Lecture 23 - Noise-Robust Quantum Machine Learning | MIT 6.S965
Taught by
MIT HAN Lab
Related Courses
Training Quantum Neural Networks with an Unbounded Loss Function - IPAM at UCLAInstitute for Pure & Applied Mathematics (IPAM) via YouTube Panel on Quantum Machine Learning and Barren Plateaus
Simons Institute via YouTube Stanford Seminar - Computing with Physical Systems
Stanford University via YouTube Understanding Quantum Machine Learning Also Requires Rethinking Generalization
Institute for Pure & Applied Mathematics (IPAM) via YouTube Quantum Neural Networks: Design and Training for Quantum Learning Tasks
Simons Institute via YouTube