Bag of Words Model for Image Classification - Lecture 16
Offered By: University of Central Florida via YouTube
Course Description
Overview
Syllabus
Intro
Difficulties: within class variations
Bag-of-features - Origin: texture recognition
Bag of Words Model
Bag-of-features - Origin: bag-of-words (text)
Bag-of-features for image classification
feature extraction
Dense features
Step 2: Quantization
K-means Clustering: Step 1 Algorithm: kmeans, Distance Metric Euclidean Distance
Example: 3-means Clustering
Examples for visual words
Training data Vectors are histograms, one from each training image
Examples for misclassified images
Evaluation of image classification
PASCAL 2007 dataset
Results for PASCAL 2007
Step 3: Classification
Image representation
Spatial pyramid matching
Spatial pyramid representation
Scene classification
Retrieval examples
Category classification - CalTech 101
Discussion
Weizmann Action Dataset
KTH Data Set
UCF Sports Action Dataset
IXMAS Multi-view Data Set
UCF YouTube Action Dataset (UCF-11)
Bag of Visual Words model (II)
Histogram of Optical flow (HOF)
HOF Steps
Taught by
UCF CRCV
Tags
Related Courses
Computer Vision: The FundamentalsUniversity of California, Berkeley via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning for Musicians and Artists
Goldsmiths University of London via Kadenze Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera