Facial Recognition: Eigenvectors and Covariance Matrices - Lecture 14
Offered By: University of Central Florida via YouTube
Course Description
Overview
Explore facial recognition technology in this comprehensive lecture from the University of Central Florida. Begin with an introduction to simple approaches and their associated problems before delving into advanced concepts such as eigenvectors and eigenvalues. Examine practical examples and learn how to apply these principles to face recognition systems. Investigate the role of covariance matrices and distance calculations in improving accuracy. Conclude by addressing common challenges in facial recognition and discussing potential solutions to enhance system performance.
Syllabus
Intro
Simple approach
Problems
Eigenvector
Example
Eigenvalues
Eigenvectors
Face Recognition
Covariance Matrix
Distance
Problem
Solution
Taught by
UCF CRCV
Tags
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Computational Photography
Georgia Institute of Technology via Coursera Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera Creative, Serious and Playful Science of Android Apps
University of Illinois at Urbana-Champaign via Coursera