YoVDO

Knowledge Distillation and Network Augmentation for Efficient Machine Learning - Lecture 10

Offered By: MIT HAN Lab via YouTube

Tags

Machine Learning Courses Neural Networks Courses Microcontrollers Courses TinyML Courses Model Compression Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore knowledge distillation techniques in this comprehensive lecture from MIT's TinyML and Efficient Deep Learning Computing course. Delve into self and online distillation methods, as well as distillation for various tasks. Learn about network augmentation, an innovative training technique for tiny machine learning models. Gain insights into deploying neural networks on resource-constrained devices like mobile phones and IoT devices. Discover efficient inference and training techniques, including model compression, pruning, quantization, neural architecture search, and on-device transfer learning. Apply these concepts to optimize models for videos, point cloud data, and natural language processing tasks. Get hands-on experience implementing deep learning applications on microcontrollers, mobile devices, and quantum machines through an open-ended design project focused on mobile AI.

Syllabus

Lecture 10 - Knowledge Distillation | MIT 6.S965


Taught by

MIT HAN Lab

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent