YoVDO

Learning Representations on Biological Data with Weakly Supervised Learning

Offered By: Valence Labs via YouTube

Tags

Representation Learning Courses Drug Discovery Courses Computational Biology Courses Contrastive Learning Courses Weakly Supervised Learning Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on learning representations of biological data using weakly supervised learning techniques. Delve into high-throughput perturbational experiments and their role in identifying biological relationships, characterizing mechanisms of action, and constructing biological networks. Examine the impact of dataset transformations on cosine similarity distributions and discover Perturbational Metric Learning (PeML), a novel weakly-supervised method leveraging replicate data to enhance representation learning. Investigate how PeML improves the recovery of known biological relationships and enables more effective downstream analysis tasks. Gain insights into the exciting frontier of representation learning with weak supervision and self-supervision in computational biology through this in-depth presentation by Ian Smith from Valence Labs.

Syllabus

- Intro
- Background
- Similarity analysis
- Structure of biological data
- Cosine similarity
- Results
- Perturbational metric learning
- Contrastive learning
- PeML
- Results
- Future directions
- Conclusions
- Q+A


Taught by

Valence Labs

Related Courses

Synapses, Neurons and Brains
Hebrew University of Jerusalem via Coursera
Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera
Bioinformatics Algorithms (Part 2)
University of California, San Diego via Coursera
Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera
Neuronal Dynamics
École Polytechnique Fédérale de Lausanne via edX