Learning Representations of Long Narratives for Summarization and Inference
Offered By: Center for Language & Speech Processing(CLSP), JHU via YouTube
Course Description
Overview
Explore cutting-edge research on improving automatic understanding and modeling of long, complex narratives in this lecture by Lea Frermann. Dive into two projects aimed at enhancing NLP systems' ability to process extended texts and make inferences. Learn about topic-aware summarization models that leverage document structure for improved flexibility, especially in long documents. Discover a novel approach to incremental inference in multi-modal, evolving environments through a case study on identifying perpetrators in TV crime series episodes. Gain insights into the comparison between model and human predictions for this task. Understand the speaker's background in efficiency and robustness of human learning and inference, and how it applies to processing large corpora of child-directed speech and complex narratives like book and film plots.
Syllabus
Learning Representations of Long Narratives for Summarization and Inference -- Lea Frermann 2019
Taught by
Center for Language & Speech Processing(CLSP), JHU
Related Courses
Miracles of Human Language: An Introduction to LinguisticsLeiden University via Coursera Language and Mind
Indian Institute of Technology Madras via Swayam Text Analytics with Python
University of Canterbury via edX Playing With Language
TED-Ed via YouTube Computational Language: A New Kind of Science
World Science U