Learning Probability Distributions: What Can and Can't Be Done
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a comprehensive lecture on statistical learning and probability distribution analysis. Delve into two major research directions concerning guaranteed generalizations from finite samples. Examine the challenge of learning under common prior knowledge assumptions, focusing on the sample complexity of learning Gaussian mixtures. Investigate the characterization of learnable distribution families, contrasting it with binary classification prediction and other machine learning tasks. Discover why learnability of distribution families cannot be characterized by a combinatorial dimension. Gain insights from collaborative research efforts, including work on Gaussian mixtures and distribution family learnability.
Syllabus
Learning probability distributions; what can, what can't be done
Taught by
Simons Institute
Related Courses
Launching into Machine Learning 日本語版Google Cloud via Coursera Launching into Machine Learning auf Deutsch
Google Cloud via Coursera Launching into Machine Learning en Français
Google Cloud via Coursera Launching into Machine Learning en Español
Google Cloud via Coursera Основы машинного обучения
Higher School of Economics via Coursera