Learning Port Hamiltonian Structures Using PINNs Architecture
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore the intersection of machine learning and dynamical systems in this 30-minute conference talk by Karim Cherifi from TU Berlin. Delve into the application of Physics-Informed Neural Networks (PINNs) architecture for learning Port Hamiltonian structures, a powerful framework for modeling complex physical systems. Gain insights into cutting-edge research presented at the Fourth Symposium on Machine Learning and Dynamical Systems, hosted by the Fields Institute.
Syllabus
Learning Port Hamiltonian structures using PINNs type architecture
Taught by
Fields Institute
Related Courses
Inverse Methods in Heat TransferIndian Institute of Technology Madras via Swayam Laboratory for Interdisciplinary Breakthrough Science - Hybrid
International Centre for Theoretical Sciences via YouTube Improving the Variational Learning of Physics-Driven Neural Generative Models
Alan Turing Institute via YouTube HypoSVI- Earthquake Hypocentre Inversion With Stein Variational Inference and Physics Informed Neural Networks
Alan Turing Institute via YouTube Emulating InterStellar Medium Chemistry with Physics Informed Neural Networks
Alan Turing Institute via YouTube