Learning Linear Dynamical Systems with Hankel Nuclear Norm Regularization
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore the intricacies of learning linear dynamical systems from input-output data in this 35-minute lecture by Maryam Fazel from the University of Washington. Delve into the challenges of system identification with limited output samples, a crucial step in control and policy decision problems across various domains. Examine recent developments in finite-sample statistical analysis using least-squares regression, and investigate the benefits of adding a Hankel nuclear norm regularizer when seeking low-order systems. Gain new insights into the sample complexity of this regularized scheme and its practical applications in engineering. Part of the Mini-symposium on Low-Rank Models and Applications at the Fields Institute, this talk provides a comprehensive overview of cutting-edge research in linear dynamical systems and their identification.
Syllabus
Learning Linear Dynamical Systems with Hankel Nuclear Norm Regularization
Taught by
Fields Institute
Related Courses
6.S094: Deep Learning for Self-Driving CarsMassachusetts Institute of Technology via Independent Natural Language Processing (NLP)
Microsoft via edX Deep Reinforcement Learning
Nvidia Deep Learning Institute via Udacity Advanced AI: Deep Reinforcement Learning in Python
Udemy Self-driving go-kart with Unity-ML
Udemy