Learning From Contrastive Examples in Machine Learning
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the benefits of contrastive examples in machine learning through this 37-minute lecture by Sandra Zilles from the University of Regina. Delve into a theoretical framework examining how different types of contrastive examples impact active learners, focusing on sample complexity in concept class learning. Investigate specific concept classes comprising geometric concepts and Boolean functions. Discover the intriguing connection between learning from contrastive examples and the classical self-directed learning model. Gain insights into how paired instances with slight differences yet distinct class labels can serve as explanatory tools in the learning process.
Syllabus
Learning From Contrastive Examples
Taught by
Simons Institute
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent