YoVDO

Learning and Exploiting Statistical Dependencies in Networks - 2007

Offered By: Center for Language & Speech Processing(CLSP), JHU via YouTube

Tags

Network Analysis Courses Data Mining Courses Machine Learning Courses Social Networks Courses Autocorrelation Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the cutting-edge techniques for analyzing and modeling network data in this comprehensive lecture by David Jensen from the University of Massachusetts. Delve into the unifying concepts behind three key areas of research: learning joint distributions of variables on networks, methods for network navigation, and indexing network structure. Discover how these approaches leverage autocorrelation, a common feature in social networks, to expand our understanding and predictive capabilities. Gain insights into applications spanning citation analysis, web mining, bioinformatics, peer-to-peer networking, computer security, epidemiology, and financial fraud detection. Learn about relational dependency networks, latent group models, expected-value navigation, and network structure indices as powerful tools for exploiting statistical dependencies in networks. Understand how these interconnected research areas form a cycle unified by the concept of autocorrelation, offering new perspectives on analyzing and navigating complex network structures.

Syllabus

Learning and exploiting statistical dependencies in networks – David Jensen (UMass) - 2007


Taught by

Center for Language & Speech Processing(CLSP), JHU

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent