Leaner, Greener and Faster PyTorch Inference with Quantization
Offered By: MLOps World: Machine Learning in Production via YouTube
Course Description
Overview
Discover the power of quantization in PyTorch for optimizing neural networks in this comprehensive conference talk. Learn how to transform FP32 parameters into integers without sacrificing accuracy, resulting in leaner, greener, and faster models. Explore the fundamentals of quantization, its implementation in PyTorch, and various approaches available. Gain insights into the benefits and potential pitfalls of each method, enabling informed decision-making for specific use cases. Follow along as the speaker demonstrates the application of quantization techniques on a large non-academic model, showcasing real-world effectiveness. Presented by Suraj Subramanian, a developer advocate and ML engineer at Meta AI, this talk offers valuable knowledge for enhancing PyTorch inference performance.
Syllabus
Leaner, Greener and Faster Pytorch Inference with Quantization
Taught by
MLOps World: Machine Learning in Production
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent