Localized-Wave-Function Methods in Quantum Chemistry and Their Extension to Quantum Computers
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore localized wave-function methods in quantum chemistry and their extension to quantum computers in this 43-minute lecture by Laura Gagliardi from the University of Chicago. Delve into the localized active-space self-consistent field (LASSCF) method, designed to reduce computational costs for large, strongly correlated systems. Discover how LASSCF approximates the strongly correlated part of the wave function and learn about its linear computational cost. Examine a framework for quantum algorithms inspired by classical LASSCF, utilizing quantum phase estimation (QPE) and fragment entanglement. Investigate the potential of this approach to provide additional correlation between fragments while reducing computational time compared to full QPE. Gain insights into near-degeneracy electron correlation effects, generalized active space, and the limitations of LASSCF. Study applications in multi-metallic compounds, prototype bimetallic complexes, and the computation of total electronic energy using multiconfiguration pair-density functional theory (MC-PDFT). Explore the extension of these methods to periodic systems using density matrix embedding theory.
Syllabus
Intro
Near-Degeneracy Electron Correlation Effects in Extended Systems
Generalized Active Space
LASSCF Uses the Same Algorithm as Density Matrix Embedding Theory (DMET)
Limitations of LASSCF: Interfragment Entanglement
J Coupling in Multi-Metallic Compounds
Localized Active Space - State Interaction
Prototype Bimetallic Compounds
Coupling Fragments
How to Compute the Total Electronic Energy: Multiconfiguration Pair-Density Functional Theory (MC-PDFT)
Benchmarking MC-PDFT for Excitation Energies 23 Electronic Excitations
Towards Periodic Systems with Density Matrix Embedding Theory
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Intro to Computer ScienceUniversity of Virginia via Udacity Quantum Mechanics for IT/NT/BT
Korea University via Open Education by Blackboard Emergent Phenomena in Science and Everyday Life
University of California, Irvine via Coursera Quantum Information and Computing
Indian Institute of Technology Bombay via Swayam Quantum Computing
Indian Institute of Technology Kanpur via Swayam