Toward Probabilistic Coarse-to-Fine Program Synthesis
Offered By: ACM SIGPLAN via YouTube
Course Description
Overview
Explore a 12-minute conference talk from ACM SIGPLAN's LAFI'24 that introduces a novel approach to program synthesis using probabilistic methods. Delve into the concept of coarse-to-fine program synthesis, where simple probabilistic programs are initially created and then iteratively refined. Learn how this method addresses the challenge of evaluating partial programs during the synthesis process by utilizing probabilistic semantics to assess the likelihood of input-output examples. Discover how this approach can be applied to synthesize both deterministic programs and probabilistic models of conditional output distributions. Examine preliminary evidence supporting the effectiveness of using coarse probabilistic program likelihoods to guide the synthesis process in various scenarios.
Syllabus
[LAFI'24] Toward Probabilistic Coarse-to-Fine Program Synthesis
Taught by
ACM SIGPLAN
Related Courses
Stanford Seminar - Concepts and Questions as ProgramsStanford University via YouTube DreamCoder- Growing Generalizable, Interpretable Knowledge With Wake-Sleep Bayesian Program Learning
Yannic Kilcher via YouTube A Neural Network Solves and Generates Mathematics Problems by Program Synthesis - Paper Explained
Aleksa Gordić - The AI Epiphany via YouTube EI Seminar - Recent Papers in Embodied Intelligence
Massachusetts Institute of Technology via YouTube Using Program Synthesis to Build Compilers
Simons Institute via YouTube