Koopman Operator Theory Based Machine Learning of Dynamical Systems
Offered By: GERAD Research Center via YouTube
Course Description
Overview
Explore the cutting-edge application of Koopman Operator Theory (KOT) to machine learning for dynamical systems in this informative lecture. Delve into the challenges faced by traditional machine learning approaches when dealing with complex process dynamics, and discover how KOT offers a solution inspired by human intelligence. Learn about the mathematical foundations of KOT and its ability to create generative, predictive, and context-aware models adaptable to feedback control applications. Gain insights into computational methods that enable efficient processing, and examine real-world applications in fluid dynamics, power grid dynamics, network security, soft robotics, and game dynamics. This talk, presented by Igor Mezic from the University of California, Santa Barbara, provides a comprehensive overview of KOT-based machine learning and its potential to revolutionize our understanding and control of complex dynamical systems.
Syllabus
Koopman Operator Theory Based Machine Learning of Dynamical Systems, Igor Mezic
Taught by
GERAD Research Center
Related Courses
Statistical Thinking for Data Science and AnalyticsColumbia University via edX Developing Big Data Solutions with Azure Machine Learning
Microsoft via edX Bias and Discrimination in AI
Université de Montréal via edX Inteligencia Artificial y Robótica
Universidad Anáhuac via edX Planning with SAP Analytics Cloud
SAP Learning