YoVDO

A Structural Variation Map of 499 Han Chinese Individuals Using Long-Read Sequencing Data

Offered By: Labroots via YouTube

Tags

Genomics Courses Bioinformatics Courses Population Genetics Courses Human Evolution Courses Genetic Diseases Courses Long Read Sequencing Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking keynote presentation by Dr. Fritz Sedlazeck on structural variation mapping in Han Chinese individuals using long-read sequencing data. Delve into the comprehensive study of structural variants (SVs) across 499 Han Chinese genomes, utilizing Oxford Nanopore technology. Learn about the importance of SVs in human evolution and genetic disease, with a focus on non-Caucasian ethnicities. Discover insights on SV clustering, comparisons to other studies, SV desert regions, natural knockout genes, and SVs impacting traits such as height variation. Gain knowledge about the limitations of the GRCh38 reference genome and the methods used in this groundbreaking research. Earn PACE credits by watching this 51-minute webinar and following the provided instructions.

Syllabus

Intro
A structural variation map of 945 Han Chinese individuals using long-read sequencing data
Gold standards
Long read sequencing SV calling
Long read population sequencing
Sampling site
SV genotyping
SV results: 945 Han Chinese
Where do the SV cluster?
A comparison to other studies
SV desert region
Natural Knockout Genes
SV impacting traits
SV impacting height variation: ACAN
What are we missing in GRCh38?
Summary
Methods


Taught by

Labroots

Related Courses

Useful Genetics Part 2
The University of British Columbia via Coursera
ГМО: технологии создания и применение
Novosibirsk State University via Coursera
Causes of Human Disease: Exploring Cancer and Genetic Disease
University of Leeds via FutureLearn
人类遗传探秘(2019春)
Ningxia University via XuetangX
BIG - Introduction à la BioInformatique et à la médecine Génomique
Université Sorbonne Paris Cité via France Université Numerique