Average Heights of Abelian Varieties with Complex Multiplication
Offered By: BIMSA via YouTube
Course Description
Overview
Explore the intricate relationship between periods and L-functions in the context of abelian varieties with complex multiplication. Delve into Pierre Colmez's groundbreaking conjecture from the 1990s, which proposes a precise connection between periods and the degree 1 coefficient of certain Artin L-functions' Taylor expansion at 0. Learn about Colmez's proof for the cyclotomic field case and discover how recent work by Tonghai Yang, Bruinier, Kudla, and Yang has led to proving a consequence of Colmez's conjecture for average periods of abelian varieties with complex multiplication by a fixed CM number field. Gain insights into this collaborative research effort with F. Andreatta, E. Goren, and B. Howard, presented as part of the International Congress of Basic Science 2024.
Syllabus
Keerthi Sampath Madapusi: Average heights of abelian varieties with complex multiplication #ICBS2024
Taught by
BIMSA
Related Courses
Modern AlgebraIndian Institute of Technology Kanpur via Swayam Algebraic Number Theory and Rings I - Math History - NJ Wildberger
Insights into Mathematics via YouTube Standard and Less Standard Asymptotic Methods - Lecture 3
ICTP Mathematics via YouTube From Knots to Number Theory II
ICTP Mathematics via YouTube Two Mathematicians, Their Work and Career Experiences - Radhika Ganapathy and Purvi Gupta
International Centre for Theoretical Sciences via YouTube