YoVDO

The Use of Machine Learning in Computational Metabolomics Workflows

Offered By: Finnish Center for Artificial Intelligence FCAI via YouTube

Tags

Machine Learning Courses Bioinformatics Courses Mass Spectrometry Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the cutting-edge applications of machine learning in computational metabolomics workflows in this 44-minute seminar by Justin J.J. van der Hooft, Assistant Professor in Computational Metabolomics at Wageningen University. Delve into the challenges of structurally characterizing specialized metabolites and their crucial roles in regulating physiological processes and inter-organism communication. Learn about recent advances in computational metabolomics, including the development of tools like MS2LDA, MotifDB, Spec2Vec, MS2DeepScore, and MS2Query for substructure discovery, annotation, and improved spectral similarity scoring. Gain insights into the integration of genome and metabolome mining workflows to accelerate specialized metabolite discovery and characterization. Understand the potential impact of these methodological developments on our understanding of metabolites' roles in growth, development, and health. Discover the speaker's perspective on the importance of data sharing in advancing the field of metabolomics.

Syllabus

Justin J.J. van der Hooft: The use of Machine Learning in Computational Metabolomics Workflows


Taught by

Finnish Center for Artificial Intelligence FCAI

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent