YoVDO

The Classification of Finite-Dimensional Lie Algebras of Hamiltonian Vector Fields on the Plane

Offered By: Centre de recherches mathématiques - CRM via YouTube

Tags

Mathematical Physics Courses Differential Equations Courses Vector Fields Courses Hamiltonian Systems Courses Lie Algebras Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the classification of finite-dimensional Lie algebras of Hamiltonian vector fields on the plane in this comprehensive mathematical physics seminar. Delve into Sophus Lie's classification of locally diffeomorphic finite-dimensional Lie algebras of vector fields on the plane, following the modern approach by Gonzalez-Lopez, Kamran, and Olver. Examine the relationships between different Lie algebras in the classification, including which are diffeomorphic to Lie subalgebras of others. Investigate the subclass of Lie algebras that are Hamiltonian relative to a symplectic structure. Learn how to apply this classification to study relevant types of Hamiltonian systems on the plane and related results. Gain insights into the mathematical foundations of Lie-Hamilton systems and their applications in physics and mathematics.

Syllabus

Javier de Lucas Araujo: The classification of finite-dimensional Lie algebras of Hamiltonian vector.


Taught by

Centre de recherches mathématiques - CRM

Related Courses

Scientific Computing
University of Washington via Coursera
Differential Equations in Action
Udacity
Initiation à la théorie des distributions
École Polytechnique via Coursera
Everything is the Same: Modeling Engineered Systems
Northwestern University via Coursera
Analyse numérique pour ingénieurs
École Polytechnique Fédérale de Lausanne via Coursera