YoVDO

Iva Halacheva - The Cactus Group, Crystals, and Perverse Equivalences

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Category Theory Courses Algebraic Structures Courses

Course Description

Overview

Explore the connections between the cactus group, crystals, and perverse equivalences in this advanced mathematics lecture. Delve into the construction of equivalences on derived categories using Rickard complexes, and examine how these complexes satisfy braid relations for semisimple Lie algebras. Learn about the action of the braid group and discover how the complex corresponding to the positive lift of the longest Weyl group element induces a bijection on irreducible objects and recovers the cactus group action on the corresponding crystal. Follow the progression from SL2 settings to general G examples, and understand the combinatorial aspects of the cactus group in relation to these mathematical structures.

Syllabus

Introduction
SL2 setting
Isomorphism
Theta
Richard Complex
Perverse equivalence
Sl2 example
General G example
Braid group
Combinatorial cactus group


Taught by

Hausdorff Center for Mathematics

Related Courses

Unleashing Algebraic Metaprogramming in Julia with Metatheory.jl
The Julia Programming Language via YouTube
COSC250 - Functional and Reactive Programming
Independent
Free as in Monads - Understanding and Applying Free Monads - Lecture 44
ChariotSolutions via YouTube
Generalised Integrated Information Theories
Models of Consciousness Conferences via YouTube
Reasoning About Conscious Experience With Axiomatic and Graphical Mathematics
Models of Consciousness Conferences via YouTube