YoVDO

Is Distance Matrix Enough for Geometric Deep Learning?

Offered By: Valence Labs via YouTube

Tags

Geometric Deep Learning Courses Molecular Dynamics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the limitations and potential of geometric deep learning in this comprehensive talk by Zian Li from Valence Labs. Delve into the insufficiency of Message Passing Neural Networks (MPNNs) for learning 3D graph geometry and discover the novel k-DisGNNs approach. Understand how k-DisGNNs can effectively exploit distance matrix information, learn high-order geometric data, unify existing geometric models, and act as universal function approximators. Examine the connection between geometric deep learning and traditional graph representation learning, challenging the notion that complex equivariant models are the only solution. Follow along as Li presents counterexamples, experimental results, and engages in a thought-provoking Q&A session on topics including MD17, rMD17, and QM9 datasets.

Syllabus

- Intro & Overview
- Incompleteness of Vanilla DisGNN
- k-DisGNNs
- Extracting High-Order Geometric Information
- Unifying Invariant Geometric Models
- Completeness and Universality
- Experiments
- Experiments: MD17
- Experiments: rMD17
- Experiments: QM9 and Effectiveness of Edge Repr
- Discussion
- Q+A


Taught by

Valence Labs

Related Courses

Graph Attention Networks - GNN Paper Explained
Aleksa Gordić - The AI Epiphany via YouTube
Geometric Deep Learning for Drug Discovery
IEEE Signal Processing Society via YouTube
Detection of Objects in Cryo-Electron Micrographs Using Geometric Deep Learning
Institute for Pure & Applied Mathematics (IPAM) via YouTube
Physics-Inspired Learning on Graph - Michael Bronstein, PhD
Open Data Science via YouTube
Inverse Problems on Graphs with Geometric Deep Learning
APS Physics via YouTube