YoVDO

Involution - Inverting the Inherence of Convolution for Visual Recognition

Offered By: Yannic Kilcher via YouTube

Tags

Computer Vision Courses Deep Learning Courses

Course Description

Overview

Explore a comprehensive analysis of the research paper "Involution: Inverting the Inherence of Convolution for Visual Recognition" in this 31-minute video. Delve into the innovative Involution Operator, which challenges traditional convolutional neural network principles by introducing spatial-specific and channel-agnostic computations. Learn how this novel approach compares to classic convolutions and local self-attention architectures, and discover its potential to improve performance while reducing computational costs in various computer vision tasks. Gain insights into the experimental results across ImageNet classification, COCO detection and segmentation, and Cityscapes segmentation benchmarks.

Syllabus

- Intro & Overview
- Principles of Convolution
- Towards spatial-specific computations
- The Involution Operator
- Comparison to Self-Attention
- Experimental Results
- Comments & Conclusion


Taught by

Yannic Kilcher

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera
Leading Ambitious Teaching and Learning
Microsoft via edX