YoVDO

Introduction to Numerical Relativistic Hydrodynamics - Lecture 4

Offered By: International Centre for Theoretical Sciences via YouTube

Tags

General Relativity Courses Black Holes Courses Supernovae Courses Partial Differential Equations Courses Neutron Stars Courses Gravitational Waves Courses Numerical Relativity Courses Computational Astrophysics Courses Relativistic Hydrodynamics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Delve into the fourth lecture of a comprehensive series on Numerical Relativistic Hydrodynamics, presented by Kenta Kiuchi from the Albert Einstein Institute. Explore advanced concepts in this graduate-level course, part of the Summer School on Gravitational-Wave Astronomy organized by the International Centre for Theoretical Sciences. Gain insights into the mathematical formulation and numerical methods used to solve complex equations in General Relativity and magnetohydrodynamics. Discover how these techniques are applied to model high-energy astrophysical phenomena such as black hole and neutron star mergers, stellar collapse, and accreting black holes. Learn about the crucial role of Numerical Relativity in interpreting gravitational-wave signals and multi-messenger observations. Enhance your understanding of the intersection between theoretical physics, computational methods, and observational astrophysics in this intensive 1 hour and 29 minute lecture.

Syllabus

Introduction to Numerical Relativistic Hydrodynamics (Lecture 4) by Kenta Kiuchi


Taught by

International Centre for Theoretical Sciences

Related Courses

Numerical Relativity as a Tool for Studying the Early Universe
University of Houston-Clear Lake via YouTube
Gravitational Waves - A New Era of Astronomy Begins
World Science Festival via YouTube
Numerical Relativity for Next-Generation Gravitational-Wave Observatories - Geoffrey Lovelace
Kavli Institute for Theoretical Physics via YouTube
Post Processing and Mock Observations - Shane Davis, Philipp Moesta
Kavli Institute for Theoretical Physics via YouTube
Numerical Relativity - Mathematical Formulation by Harald Pfeiffer
International Centre for Theoretical Sciences via YouTube