Introduction to Machine Learning
Offered By: Eberhard Karls University of Tübingen via YouTube
Course Description
Overview
Syllabus
Introduction to Machine Learning - 01 - Baby steps towards linear regression.
Introduction to Machine Learning - 02 - Multiple linear regression and SVD.
Introduction to Machine Learning - 03 - Likelihood, bias, and variance.
Introduction to Machine Learning - 04 - Regularization and cross-validation.
Introduction to Machine Learning - 05 - Logistic regression.
Introduction to Machine Learning - 06 - Linear discriminant analysis.
Introduction to Machine Learning - 07 - Neural networks and deep learning.
Introduction to Machine Learning - 08 - Boosting, bagging, and random forests.
Introduction to Machine Learning - 09 - Clustering and expectation-maximization.
Introduction to Machine Learning - 10 - Principal component analysis.
Introduction to Machine Learning - 11 - Manifold learning and t-SNE.
Taught by
Tübingen Machine Learning
Tags
Related Courses
Accounting Data AnalyticsUniversity of Illinois at Urbana-Champaign via Coursera Продвинутые методы машинного обучения
Higher School of Economics via Coursera Greedy Algorithms, Minimum Spanning Trees, and Dynamic Programming
Stanford University via Coursera The Analytics Edge
Massachusetts Institute of Technology via edX Apache Spark for Data Engineering and Machine Learning
IBM via edX