Introduction to Machine Learning
Offered By: Eberhard Karls University of Tübingen via YouTube
Course Description
Overview
Syllabus
Introduction to Machine Learning - 01 - Baby steps towards linear regression.
Introduction to Machine Learning - 02 - Multiple linear regression and SVD.
Introduction to Machine Learning - 03 - Likelihood, bias, and variance.
Introduction to Machine Learning - 04 - Regularization and cross-validation.
Introduction to Machine Learning - 05 - Logistic regression.
Introduction to Machine Learning - 06 - Linear discriminant analysis.
Introduction to Machine Learning - 07 - Neural networks and deep learning.
Introduction to Machine Learning - 08 - Boosting, bagging, and random forests.
Introduction to Machine Learning - 09 - Clustering and expectation-maximization.
Introduction to Machine Learning - 10 - Principal component analysis.
Introduction to Machine Learning - 11 - Manifold learning and t-SNE.
Taught by
Tübingen Machine Learning
Tags
Related Courses
Data Analysis and VisualizationGeorgia Institute of Technology via Udacity Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
DeepLearning.AI via Coursera 機器學習基石下 (Machine Learning Foundations)---Algorithmic Foundations
National Taiwan University via Coursera Data Science: Machine Learning
Harvard University via edX Art and Science of Machine Learning auf Deutsch
Google Cloud via Coursera