Introduction to Machine Learning
Offered By: Eberhard Karls University of Tübingen via YouTube
Course Description
Overview
Syllabus
Introduction to Machine Learning - 01 - Baby steps towards linear regression.
Introduction to Machine Learning - 02 - Multiple linear regression and SVD.
Introduction to Machine Learning - 03 - Likelihood, bias, and variance.
Introduction to Machine Learning - 04 - Regularization and cross-validation.
Introduction to Machine Learning - 05 - Logistic regression.
Introduction to Machine Learning - 06 - Linear discriminant analysis.
Introduction to Machine Learning - 07 - Neural networks and deep learning.
Introduction to Machine Learning - 08 - Boosting, bagging, and random forests.
Introduction to Machine Learning - 09 - Clustering and expectation-maximization.
Introduction to Machine Learning - 10 - Principal component analysis.
Introduction to Machine Learning - 11 - Manifold learning and t-SNE.
Taught by
Tübingen Machine Learning
Tags
Related Courses
AI for Medical PrognosisDeepLearning.AI via Coursera Analysis and Interpretation of Data
Queen Mary University of London via Coursera The Analytics Edge
Massachusetts Institute of Technology via edX Практическое использование анализа данных для финансов
E-Learning Development Fund via Coursera Aprendizaje de máquinas
Universidad Nacional Autónoma de México via Coursera