YoVDO

Introducing MLflow for End-to-End Machine Learning on Databricks

Offered By: Databricks via YouTube

Tags

MLFlow Courses Machine Learning Courses Apache Spark Courses Databricks Courses Data Engineering Courses Data Exploration Courses Hyperopt Courses

Course Description

Overview

Explore the end-to-end machine learning process using MLflow on Databricks in this 25-minute tutorial. Learn how to leverage health data to predict life expectancy through a comprehensive workflow. Begin with data engineering in Apache Spark, followed by data exploration and model tuning using hyperopt and MLflow. Discover how to utilize the model registry for governing model promotion and deploy models to production as jobs or REST endpoints. Gain insights into the latest innovations from MLflow 1.12, including data cleaning, exploration, modeling, tuning, and production deployment. Follow along as the tutorial covers topics such as Delta Tables, transactional data, exploratory data analysis with Koalas, model staging, and generating predicted life expectancies.

Syllabus

Introduction
Demo Overview
Data Engineering
Data Modeling
Delta Tables
Transactional Data
Exploratory Data
Koalas
Models
Hyperopt
Logging
Model Staging
Model Production
Predicted Life Expectancies
Recap


Taught by

Databricks

Related Courses

CS115x: Advanced Apache Spark for Data Science and Data Engineering
University of California, Berkeley via edX
Big Data Analytics
University of Adelaide via edX
Big Data Essentials: HDFS, MapReduce and Spark RDD
Yandex via Coursera
Big Data Analysis: Hive, Spark SQL, DataFrames and GraphFrames
Yandex via Coursera
Introduction to Apache Spark and AWS
University of London International Programmes via Coursera