YoVDO

Intracellular Liquid Condensates - New Approaches to Understand and Control Biomolecular Phase Transitions in Living Cells

Offered By: APS Physics via YouTube

Tags

APS Physics Courses RNA Courses Cell Biology Courses Biophysics Courses

Course Description

Overview

Explore the groundbreaking research on intracellular liquid condensates and biomolecular phase transitions in living cells presented by Cliff Brangwynne from Princeton University at the Fred Kavli Special Symposium. Delve into the role of liquid-liquid phase separation (LLPS) in organizing cellular contents and regulating genetic information flow. Discover how intrinsically disordered protein regions (IDRs) contribute to the formation of membrane-less RNA and protein-rich condensates, including the nucleolus's internal subcompartments. Learn about innovative light-controlled approaches developed to manipulate intracellular phase transitions, enabling the engineering of assembly and disassembly within specific cellular regions. Gain insights into the quantitative mapping of intracellular phase diagrams and the biophysical principles governing RNP condensate self-assembly. Explore the connections between intracellular liquids, gels, and pathological protein aggregation, as well as the mechanical interactions between these structures and the genome.

Syllabus

Introduction
Biological systems
Selfassembly
Soft condensed matter systems
Organelles
Membraneless Organelles
P Granules
Phase Transition
Phase Separation
Nucleolus
Marina Farik


Taught by

APS Physics

Related Courses

On Fake Walls Along the USA - Mexico Border
APS Physics via YouTube
Testing the Massive Black Hole Paradigm and GR with Infrared Interferometry
APS Physics via YouTube
Seeing the Unseeable - Capturing an Image of a Black Hole
APS Physics via YouTube
Exploring the Universe
APS Physics via YouTube
LIGO - Virgo & the Promise of Multi-Messenger Observations
APS Physics via YouTube