Interpretable Hierarchical Calibration of Agent-Based Models
Offered By: The Julia Programming Language via YouTube
Course Description
Overview
Explore the fusion of traditional mathematical modeling with machine learning in scientific machine learning (SciML) through this conference talk. Delve into the use of neural network function approximations to bridge the gap between ordinary differential equations (ODE) compartmental models and epidemiological agent-based models (ABM). Learn how universal differential equations (UDE) surrogates preserve global disease dynamics while isolating local behaviors of ABMs. Discover the process of automating hierarchical calibration of ABMs, separating global parameter estimations from local parameter influence. Gain insights into the emerging field of SciML and its applications in handling challenges such as numerical solver implementation, model-form error estimations, and computational expense reduction in high-fidelity models.
Syllabus
Interpretable Hierarchical Calibration of Agent-Based Models | Acquesta | JuliaCon 2024
Taught by
The Julia Programming Language
Related Courses
Introduction to Scientific Machine LearningPurdue University via edX Scientific Machine Learning: Opportunities and Challenges - Keynote
The Julia Programming Language via YouTube Scientific Machine Learning - Where Physics-based Modeling Meets Data-driven Learning
Santa Fe Institute via YouTube AI for Science - Expo Stage Talk - AAAS Annual Meeting
AAAS Annual Meeting via YouTube Leveraging Physics-Induced Bias in Scientific Machine Learning for Computational Mechanics
Alan Turing Institute via YouTube