Interpretability - Now What?
Offered By: Simons Institute via YouTube
Course Description
Overview
Syllabus
Intro
My goal interpretability
NON-goals
Investigating
Sanity check question.
Benchmarking interpretability methods (BIM)
Three metrics for measuring false positives
Model Contrast Score (MCS)
Defining concept activation vector (CAV) Inputs
TCAV core idea: Derivative with CAV to get prediction sensitivity
Quantitative validation: Guarding against spurious CAV
Recap TCAV: Testing with Concept Activation Vectors
Sanity check experiment setup
Human subject experiment: Can saliency maps communicate the same information?
TCAV in Two widely used image prediction models
Collect human doctor's knowledge
TCAV for Diabetic Retinopathy
Summary: Testing with Concept Activation Vectors
Responses from inside of academia
Limitations of TCAV
Things to keep in mind during our journey
Taught by
Simons Institute
Related Courses
Machine Learning Interpretable: interpretML y LIMECoursera Project Network via Coursera Machine Learning Interpretable: SHAP, PDP y permutacion
Coursera Project Network via Coursera Evaluating Model Effectiveness in Microsoft Azure
Pluralsight MIT Deep Learning in Life Sciences Spring 2020
Massachusetts Institute of Technology via YouTube Applied Data Science Ethics
statistics.com via edX