YoVDO

Instance Optimal Iterative Methods for Matrix Function Approximation

Offered By: Simons Institute via YouTube

Tags

Numerical Methods Courses Algorithm Design Courses Linear Systems Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 32-minute lecture on instance-optimal iterative methods for matrix function approximation, delivered by Cameron Musco from the University of Massachusetts Amherst at the Simons Institute. Delve into the conjugate gradient (CG) method's application in solving positive definite linear systems, examining its convergence rates and instance-optimality bounds. Investigate the Lanczos method's extension to approximating arbitrary matrix functions, including matrix square roots and exponentials. Analyze recent progress in proving instance-optimality for rational matrix functions and other key function classes. Consider open questions in the field and potential faster methods through alternative approaches like stochastic gradient methods. Gain insights from joint work with Noah Amsel, Tyler Chen, Anne Greenbaum, and Christopher Musco in this optimization and algorithm design-focused talk.

Syllabus

Instance Optimal Iterative Methods for Matrix Function Approximation


Taught by

Simons Institute

Related Courses

Introduction to Statistics: Descriptive Statistics
University of California, Berkeley via edX
Mathematical Methods for Quantitative Finance
University of Washington via Coursera
Dynamics
Massachusetts Institute of Technology via edX
Practical Numerical Methods with Python
George Washington University via Independent
統計学Ⅰ:データ分析の基礎 (ga014)
University of Tokyo via gacco