Instance Optimal Iterative Methods for Matrix Function Approximation
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a 32-minute lecture on instance-optimal iterative methods for matrix function approximation, delivered by Cameron Musco from the University of Massachusetts Amherst at the Simons Institute. Delve into the conjugate gradient (CG) method's application in solving positive definite linear systems, examining its convergence rates and instance-optimality bounds. Investigate the Lanczos method's extension to approximating arbitrary matrix functions, including matrix square roots and exponentials. Analyze recent progress in proving instance-optimality for rational matrix functions and other key function classes. Consider open questions in the field and potential faster methods through alternative approaches like stochastic gradient methods. Gain insights from joint work with Noah Amsel, Tyler Chen, Anne Greenbaum, and Christopher Musco in this optimization and algorithm design-focused talk.
Syllabus
Instance Optimal Iterative Methods for Matrix Function Approximation
Taught by
Simons Institute
Related Courses
Natural Language ProcessingColumbia University via Coursera Intro to Algorithms
Udacity Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Paradigms of Computer Programming
Université catholique de Louvain via edX Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX