YoVDO

Information Retrieval and Relevance: Vector Embeddings for Semantic Search

Offered By: MLOps.community via YouTube

Tags

Information Retrieval Courses Recommender Systems Courses MLOps Courses Semantic Search Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the transformative power of vector embeddings in information retrieval and semantic search in this 56-minute MLOps podcast episode featuring Daniel Svonava, CEO & Co-founder at Superlinked. Dive into fundamental concepts of vector embeddings, techniques for creating meaningful vector representations, algorithmic approaches for efficient similarity search, and practical strategies for applying these technologies in information retrieval systems. Learn from Svonava's extensive experience, including his work at YouTube Ads and his current role at Superlinked.com, a ML infrastructure startup focused on building information-retrieval heavy systems. Gain insights into the latest advancements in recommender engines and enterprise-focused LLM applications.

Syllabus

Daniel Svonava MLOps Podcast


Taught by

MLOps.community

Related Courses

Semantic Web Technologies
openHPI
أساسيات استرجاع المعلومات
Rwaq (رواق)
《gacco特別企画》Evernoteで広がるgaccoの学びスタイル (ga038)
University of Tokyo via gacco
La Web Semántica: Herramientas para la publicación y extracción efectiva de información en la Web
Pontificia Universidad Católica de Chile via Coursera
快速学习
University of Science and Technology of China via Coursera