Inexact Accelerated High-order Proximal-point Methods in Convex Programming
Offered By: Society for Industrial and Applied Mathematics via YouTube
Course Description
Overview
Explore a groundbreaking framework for accelerated methods in Convex Programming through this 55-minute talk from the Society for Industrial and Applied Mathematics. Delve into the Bi-Level Unconstrained Minimization (BLUM) approach, which utilizes approximations of high-order proximal points to surpass traditional limits in Complexity Theory. Discover a novel second-order method achieving a convergence rate of O(k^(-4)), outperforming existing methods for functions with Lipschitz continuous Hessian. Examine new techniques with exact auxiliary search procedures, boasting impressive convergence rates of O(k^(-(3p+1)/2)) for proximal operators of order p≥1. Gain insights from Yurii Nesterov of Université Catholique de Louvain, Belgium, as he presents these innovative concepts in convex optimization.
Syllabus
Inexact Accelerated High-order Proximal-point Methods
Taught by
Society for Industrial and Applied Mathematics
Related Courses
The Next Generation of InfrastructureDelft University of Technology via edX The Beauty and Joy of Computing - AP® CS Principles Part 2
University of California, Berkeley via edX Advanced Data Structures in Java
University of California, San Diego via Coursera Theory of Computation
Indian Institute of Technology Kanpur via Swayam 离散数学
Shanghai Jiao Tong University via Coursera