Inapproximability of Clustering in Lp Metrics
Offered By: IEEE via YouTube
Course Description
Overview
Explore the complexities of clustering algorithms in Lp metrics through this 21-minute IEEE conference talk. Delve into the structure of computational problems, focusing on continuous clustering and its inherent difficulties. Examine approximation algorithms and the hardness of approximation in this context. Learn about key concepts such as the Vertex Edge Game, randomness, and graph embedding. Understand the significance of the Johnson Coverage Hypothesis in inapproximability. Gain valuable insights into the challenges of clustering problems and their implications in computational complexity theory.
Syllabus
Introduction
Structure of computational problems
Clustering
Continuous Clustering
Clustering is a Hard Problem
Approximation Algorithms
Hardness of Approximation
Results
Proof
Vertex Edge Game
Randomness
Graph embedding
Key takeaways
Johnson Coverage Hypothesis
In Approximability
Conclusion
Questions
Taught by
IEEE FOCS: Foundations of Computer Science
Tags
Related Courses
An Improved Exponential-Time Approximation Algorithm for Fully-Alternating Games Against NatureIEEE via YouTube Computation in the Brain Tutorial - Part 2
IEEE via YouTube Computation in the Brain - Part 1
IEEE via YouTube Spectral Independence in High-Dimensional Expanders and Applications to the Hardcore Model
IEEE via YouTube Cookbook Lower Bounds for Statistical Inference in Distributed and Constrained Settings - Part 1
IEEE via YouTube